Abstract

The melanocortin pathway is involved in the regulation of several physiological functions including skin pigmentation, steroidogenesis, obesity, energy homeostasis, and exocrine gland function. This melanocortin pathway consists of five known G-protein coupled receptors, endogenous agonists derived from the proopiomelanocortin (POMC) gene transcript, the endogenous antagonists Agouti and the Agouti-related protein (AGRP) and signals through the intracellular cAMP signal transduction pathway. The endogenous melanocortin agonists contain the putative message sequence "His-Phe-Arg-Trp," postulated to be important for melanocortin receptor molecular recognition and stimulation. Herein, we report a tetrapeptide library, based upon the template Ac-His-D-Phe-Arg-Trp-NH(2), consisting of 20 members that have been modified at the Trp(9) position (alpha-MSH numbering) and pharmacologically characterized for agonist activity at the mouse melanocortin receptors MC1R, MC3R, MC4R, and MC5R. Results from this study yielded compounds that ranged in pharmacological properties from equipotent to a loss of melanocortin receptor activity at up to 100 microM concentrations. Interestingly, modification of the Trp(9) in the tetrapeptide template at the MC1R resulted in only up to a 220-fold potency change, while at the MC4R and MC5R, up to a 9700-fold decrease in potency was observed, suggesting the MC1R is more tolerant of the modifications examined herein. The most notable results of this study include identification that the Trp(9) indole moiety in the tetrapeptide template is important for melanocortin-3 receptor agonist potency, and that this position can be used to design melanocortin ligands possessing receptor selectivity for the peripherally expressed MC1 and MC5 versus the centrally expressed MC3 and MC4 receptors. Specifically, the Ac-His-D-Phe-Arg-Tic-NH(2) and the Ac-His-D-Phe-Arg-Bip-NH(2) tetrapeptides possessed nanomolar MC1R and MC5R potency but micromolar MC3R and MC4R agonist potency. Additionally, these studies identified that substitution of the Trp amino acid with either Nal(2') or D-Nal(2') resulted in equipotent melanocortin receptor potency, suggesting that the chemically reactive Trp indole side chain may be replaced with the nonreactive Nal(2') moiety for the design of nonpeptide melanocortin receptor agonists.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.