Abstract
Identification of arachidonylethanolamide (anandamide) as an endogenous cannabinoid is one of the most important developments in cannabinoid research in recent years. In a relatively short period of time thereafter, pharmacological and biochemical studies have confirmed initial speculations that anandamide is a neuromodulator and significantly advanced our understanding of cannabinoid biochemistry. Moreover, the discovery of anandamide has led to the identification of two heretofore unknown proteins associated with cannabinoid physiology: 1) Anandamide Amidohydrolase (AAH), an enzyme responsible for the hydrolytic breakdown of anandamide and 2) the Anandamide Transporter (ANT), a carrier protein involved in the transport of anandamide across the cell membrane. Evidence obtained so far suggests that these two proteins, in combination, are responsible for the termination of the biological actions of anandamide. Also, the discovery of anandamide has revealed a novel class of more selective cannabimimetic agents possessing a somewhat different pharmacological profile of potential therapeutic value. A number of such analogs have now been reported many of which possess markedly improved cannabinoid receptor affinity and metabolic stability compared to those of the parent ligand. Generally, anandamide and all known analogs exhibit significant selectivity for the CB 1 receptor and modest to very low affinity for CB 2. For this reason, this group of compounds can be considered as CB 1, ligands. The purpose of this review is to summarize the structure-activity relationships (SAR) of anandamide for the CB 1 cannabinoid receptor and to define the structural requirements for the substrates and the inhibitors of anandamide amidohydrolase and the anandamide transporter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.