Abstract

Necroptosis is a regulated caspase-independent cell death mechanism that results in morphological features resembling non-regulated necrosis. This form of cell death can be induced in an array of cell types in apoptotic deficient conditions with death receptor family ligands. A series of [1,2,3]thiadiazole benzylamides was found to be potent necroptosis inhibitors (called necrostatins). A structure–activity relationship study revealed that small cyclic alkyl groups (i.e. cyclopropyl) and 2,6-dihalobenzylamides at the 4- and 5-positions of the [1,2,3]thiadiazole, respectively, were optimal. In addition, when a small alkyl group (i.e. methyl) was present on the benzylic position all the necroptosis inhibitory activity resided with the ( S)-enantiomer. Finally, replacement of the [1,2,3]thiadiazole with a variety of thiophene derivatives was tolerated, although some erosion of potency was observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.