Abstract

Ginkgolic acid (C13:0) (GA), isolated from Ginkgo biloba, is a potential therapeutic agent for type 2 diabetes. A series of GA analogs were designed and synthesized for the evaluation of their structure–activity relationship with respect to their antidiabetic effects. Unlike GA, the synthetic analog 1e exhibited improved inhibitory activity against PTPN9 and significantly stimulated glucose uptake via AMPK phosphorylation in differentiated 3T3-L1 adipocytes and C2C12 myotubes; it also induced insulin-dependent AKT activation in C2C12 myotubes in a concentration-dependent manner. Docking simulation results showed that 1e had a better binding affinity through a unique hydrophobic interaction with a PTPN9 hydrophobic groove. Moreover, 1e ameliorated palmitate-induced insulin resistance in C2C12 cells. This study showed that 1e increases glucose uptake and suppresses palmitate-induced insulin resistance in C2C12 myotubes via PTPN9 inhibition; thus, it is a promising therapeutic candidate for treating type 2 diabetes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.