Abstract

Density functional theory (DFT) calculations at generalized gradient approximation (GGA) level were performed to interpret experimental IR and Raman vibrational spectra, to assign (11)B-NMR chemical shifts, and to calculate the structure of the tetrahydroxyborate sodalite Na8[AlSiO4]6(B(OH)4)2. Full optimization of the intercalated compound gave the following structural parameters of B(OH)4(-): B-O-B (105.3-115.3°) and B-O-H (111.5-115.4°) angles, B-O (1.476 Å, 1.491 Å) and O-H (0.98 Å) distances. The calculated normal modes were assigned to experimental IR and Raman spectra. In general, close agreement between theory and experiment was obtained. The mean absolute deviation (MAD) is below 11 cm(-1). We also calculate the thermodynamical stability of Na8[AlSiO4]6(B(OH)4)2 with respect to Na8[AlSiO4]6(BH4)2 in the context of the tetrahydroborate hydration reaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.