Abstract

Using density functional theory, stability, chemical, and optical properties of small platinum clusters, Ptn (n = 2 to 10) have been investigated. An attempt has been made to establish a correlation between stability and chemical reactivity parameters. The calculated geometries are in agreement with the available experimental and theoretical results. The atom addition energy change (ΔE1) and stability function (ΔE2) reveal that Pt7 is more stable than its neighboring clusters. Very good agreement of the calculated electron affinity with the available experimental results has been observed. The polarizability of the Ptn clusters depends almost linearly on the number of atoms. A correlation between the static polarizability and ionization potential is found, paving a way to calculate polarizabilty of larger clusters from their ionization potential. The calculated vibrational frequencies are compared with available experimental and theoretical results and good agreement between them has been established. In general, the prominent peak of molar absorption coefficient is shifting toward the lower energy side when cluster size grows. Our DOS calculation suggests that d orbital is primarily responsible for HOMO position and s orbital is responsible for LUMO position.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call