Abstract

The aim of this study was to understand the effects of braid pattern and the number of layers on three-dimensional (3D) braided unit cell structures. Various unit cell-based representative 3D braided preforms were developed. Data generated from these structures included unit cell dimensions, yarn angle, and yarn length in the unit cell structures. It was shown that braid patterns affected the 3D braided unit cell structures. The 1 × 1 braid pattern made fully interconnected integral 3D braided unit cell structures, whereas the 2 × 1 braid pattern created disconnected braid layers that were connected to the structures edges. When the number of layers increased, 3D braided unit cell thickness also increased. Braid pattern slightly affected the braider yarn angle, whereas the number of layers did not influence it. It was observed that the number of layers considerably affected the yarn length in the unit cell structure. Increasing the layer number from five to 10 layers created a yarn path in the unit cell edge regions called the ‘multilayer yarn length’. This yarn path was not observed below five-layer 3D braided unit cell structures. In jamming conditions, minimum jamming decreased the width of the unit cell structure, but maximum jamming increased its width. On the other hand, minimum jamming decreased the surface angle of the unit cell structure, whereas maximum jamming increased the surface angle. In addition, it was realized that jamming conditions influenced the density of the unit cell but did not affect the yarn length in the unit cell structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.