Abstract

BackgroundMalaria is one of the most prevalent tropical infectious diseases. Since recently cases of artemisinin resistance were reported, novel anti-malarial drugs are required which differ from artemisinins in structure and biological target. The plasmodial glycogen synthase kinase-3 (PfGSK-3) was suggested as a new anti-malarial drug target. 4-Phenylthieno[2,3-b]pyridines were previously identified as selective PfGSK-3 inhibitors with antiplasmodial activity. The present study aims at identifying a molecular position on this scaffold for the attachment of side chains in order to improve solubility and antiplasmodial activity. Furthermore, the role of axial chirality in the compound class for antiplasmodial activity and PfGSK-3 inhibition was investigated.Methods4-Phenylthieno[2,3-b]pyridines with substituents in 4-position of the phenyl ring were docked into the ATP binding site of PfGSK-3. The compounds were synthesized employing a Thorpe reaction as final step. The enantiomers of one congener were separated by chiral HPLC. All derivatives were tested for inhibition of asexual erythrocytic stages of transgenic NF54-luc Plasmodium falciparum. Selected compounds with promising antiplasmodial activity were further evaluated for inhibition of HEK293 cells as well as inhibition of isolated PfGSK-3 and HsGSK-3. The kinetic aqueous solubility was assessed by laser nephelometry.ResultsThe para position at the 4-phenyl ring of the title compounds was identified as a suitable point for the attachment of side chains. While alkoxy substituents in this position led to decreased antiplasmodial activity, alkylamino groups retained antiparasitic potency. The most promising of these congeners (4h) was investigated in detail. This compound is a selective PfGSK-3 inhibitor (versus the human GSK-3 orthologue), and exhibits improved antiplasmodial activity in vitro as well as better solubility in aqueous media than its unsubstituted parent structure. The derivative 4b was separated into the atropisomers, and it was shown that the (+)-enantiomer acts as eutomer.ConclusionsThe attachment of alkylamino side chains leads to the improvement of antiplasmodial activity and aqueous solubility of selective PfGSK-inhibitors belonging to the class of 4-phenylthieno[2,3-b]pyridines. These molecules show axial chirality, a feature of high impact for biological activity. The findings can be exploited for the development of improved selective PfGSK-3 inhibitors.

Highlights

  • Malaria is one of the most prevalent tropical infectious diseases

  • It was investigated whether the enantiomers of active compounds show differing activity, an assumption deduced from the orientation of the inhibitors in the ATP binding pocket of Plasmodium falciparum glycogen synthase kinase-3 (PfGSK-3) predicted by molecular docking studies

  • In contrast to the target-oriented screening which initially identified the thieno[2,3-b]pyridines as PfGSK-3 inhibitors [25], in the present study a phenotypic assay was utilized with the aim of taking into account the membrane permeability of the inhibitor molecules at an early stage of development

Read more

Summary

Introduction

Since recently cases of artemisinin resistance were reported, novel anti-malarial drugs are required which differ from artemisinins in structure and biological target. As a result of improved diagnosis, intensified vector control and infection prophylaxis, the prevalence of malaria significantly declined between the years 2000 and 2015 in terms of both morbidity and mortality. This positive development recently came to a standstill in 2016. Resistant P. falciparum strains have been reported against all deployed anti-malarial drugs, including artemisinins. Novel drugs for prophylaxis and treatment of malaria are urgently required, either as replacement or additional partner for artemisinin-based combinations. To prevent cross-resistance, new medicines should have an untapped mode of action, and be based on chemotypes distinct from artemisinins or other established anti-malarial drugs [5]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call