Abstract

In this study, we present an extraordinary structural transition accompanying the occurrence of more than two coexisting clathrate hydrate phases in the double (CH4 + tetramethylammonium hydroxide (Me(4)NOH)) and (H2 + Me(4)NOH) ionic clathrate hydrates using solid-state NMR spectroscopy (high-powered decoupling and CP/MAS) and powder X-ray diffraction. It was confirmed that structure-I (sI) and structure-II (sII) hydrates coexist as the water concentration increases. In the Me(4)NOH-depleted region, the unique tuning phenomenon was first observed at a chemical shift of -8.4 ppm where relatively small gaseous CH4 molecules partly occupy the sII large cages (sII-L), pulling out large cationic Me(4)N+ that is considered to be strongly bound with the surrounding host lattices. Moreover, we note that, while pure Me(4)NOH.16H(2)O clathrate hydrates melted at 249 K under atmospheric pressure conditions, the double (CH4 + Me(4)NOH) clathrate hydrate maintained a solid state up to approximately 283 K under 120 bar of CH4 with a conductivity of 0.065 S cm(-1), suggesting its potential use as a solid electrolyte. The present results indicate that ionic contributions must be taken into account for ionic clathrate hydrate systems because of their distinctive guest dynamic behavior and structural patterns. In particular, microscopic analyses of ionic clathrate hydrates for identifying physicochemical characteristics are expected to provide new insights into inclusion chemistry.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.