Abstract

Pillared-layer metal–organic frameworks (MOFs) are often encountered to “collapse” upon external stimuli due to weak interactions between the layers and the pillars. However, the detailed local structural change, especially the accumulation of defects due to intricately disordered bond dissociations, is not clear due to the complicated and dynamic nature of the collapse. We report a luminescent pillared-layer MOF structure, FDM-22, using zinc dicarboxylates as layers and dipyridyl ligands as pillars, in which three different transformed structures were captured along the increasing number of coordination bond dissociations between zinc metals and pyridine linkers. The transformation is triggered by these local point defect formations in the MOF, which further contribute to the modulation of its luminescence property, as well as prominent change in the morphology and pore distribution of the MOF. Evidenced by Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.