Abstract
BackgroundKlebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Medical inflictions by the pathogen can range from respiratory and urinary tract infections, septicemia and primarily, pneumonia. As more K. pneumoniae strains are becoming highly resistant to various antibiotics, treatment of this bacterium has been rendered more difficult. This situation, as a consequence, poses a threat to public health. Hence, identification of possible novel drug targets against this opportunistic pathogen need to be undertaken. In the complete genome sequence of K. pneumoniae MGH 78578, approximately one-fourth of the genome encodes for hypothetical proteins (HPs). Due to their low homology and relatedness to other known proteins, HPs may serve as potential, new drug targets.ResultsSequence analysis on the HPs of K. pneumoniae MGH 78578 revealed that a particular HP termed KPN_00953 (YcbK) contains a M15_3 peptidases superfamily conserved domain. Some members of this superfamily are metalloproteases which are involved in cell wall metabolism. BLASTP similarity search on KPN_00953 (YcbK) revealed that majority of the hits were hypothetical proteins although two of the hits suggested that it may be a lipoprotein or related to twin-arginine translocation (Tat) pathway important for transport of proteins to the cell membrane and periplasmic space. As lipoproteins and other components of the cell wall are important pathogenic factors, homology modeling of KPN_00953 was attempted to predict the structure and function of this protein. Three-dimensional model of the protein showed that its secondary structure topology and active site are similar with those found among metalloproteases where two His residues, namely His169 and His209 and an Asp residue, Asp176 in KPN_00953 were found to be Zn-chelating residues. Interestingly, induced expression of the cloned KPN_00953 gene in lipoprotein-deficient E. coli JE5505 resulted in smoother cells with flattened edges. Some cells showed deposits of film-like material under scanning electron microscope.ConclusionsWe postulate that KPN_00953 is a Zn metalloprotease and may play a role in bacterial cell wall metabolism. Structural biology studies to understand its structure, function and mechanism of action pose the possibility of utilizing this protein as a new drug target against K. pneumoniae in the future.
Highlights
Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients
Structural biology studies to understand its structure, function and mechanism of action pose the possibility of utilizing this protein as a new drug target against K. pneumoniae in the future
Sequence analysis The genome of K. pneumoniae MGH 78578 was obtained from NCBI website (Refseq: NC_009648) and thoroughly studied to identify the annotated proteins and hypothetical proteins (HPs)
Summary
Klebsiella pneumoniae plays a major role in causing nosocomial infection in immunocompromised patients. Klebsiella pneumoniae is a Gram-negative, rod-shaped bacterium that is widely distributed in soil and water [1] as well as the intestine, urethra and respiratory tract of mankind and other animals [2] This opportunistic pathogen has been regarded as one of the major causes of respiratory and urinary tract infections, septicemia and the third-most-common bacterial cause of hospital-acquired pneumonia in immunocompromised patients [3]. Similar cases have been observed in other countries as well, indicating that such medical infliction is confined to Taiwan per se and may potentially emerge as a global problem [6] To add to this problem, K. pneumoniae strains which produce extended-spectrum beta-lactamases and are highly resistant to a spectrum of antibiotics are emerging worldwide [6]. This makes treatments for this bacterium more difficult and has certainly created obstacles, no less danger, to public health
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.