Abstract

In this study, rice starch-protein hydrolysate (WPH-S) complexes with high resistant starch (RS) content were prepared by heat-moisture treatment (HMT) and annealing (ANN). The effects of different hydrothermal treatments on the structure and thermal stability of the WPH-S complexes and their relationship with starch digestibility were further discussed. The results showed that RS contents of ANN-WPH-S complexes (35.09–40.26 g/100 g) were higher than that of HMT-WPH-S complexes (24.15–38.74 g/100 g). Under hydrothermal treatments, WPH decreased the hydrolysis kinetic constant (k) of starch form 4.07 × 10−2–4.63 × 10−2 min−1 to 3.29 × 10−2–3.67 × 10−2 min−1. HMT and ANN promoted hydrogen bonding between WPH and starch molecules, thus increasing the molecular size of starch. In addition, the shear stability of WPH-S mixture was improved with the hysteresis loop area decreased after HMT/ANN treatments, resulting in a more stable structure. Most importantly, the hydrothermal treatment made the scatterers of WPH-S complexes denser and the surface smoother. Especially after ANN treatment, the WPH60-S complex formed a denser aggregate structure, which hindered the in vitro digestion of starch to a certain extent. These results enrich our understanding of the regulation of starch digestion by protein hydrolysates under different hydrothermal treatments and have guiding significance for the development of foods with a low glycemic index.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call