Abstract

A facile microwave-assisted strategy was employed to synthesize Ni3 Bi2 S2 nanocrystals. Variation in the synthesis conditions tuned the composition of monoclinic and orthorhombic phases of Ni3 Bi2 S2 . The electrochemical hydrogen evolution activity of the catalyst with highest percentage of monoclinic phase demonstrated a negligible onset potential of only 24 mV close to that of state-of-the-art Pt/C with an overpotential as low as 88 mV. Density functional theory calculations predicted the monoclinic phase exhibit the lowest adsorption free energy corresponding to hydrogen adsorption and, therefore, the highest hydrogen evolution activity amongst the considered phases. The quasi-2D structure of monoclinic phase facilitated an increased charge-transfer between Ni and Bi, favoring the downward shift of the d-band center to enhance the catalytic activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call