Abstract

RNA is instrumental to cell life in many aspects, especially gene expression regulation. Among the various known regulatory RNAs, riboswitches are particularly interesting cis‐acting molecules as they do not need cellular factor to achieve their function and are therefore highly portable from one organism to the other. These molecules usually found in the 5′ untranslated region of bacterial messenger RNAs are able to specifically sense a target ligand via an aptamer domain prior to transmitting this recognition event to an expression platform that turns on, or off, the expression of downstream genes. In addition to their obvious scientific interest, these modular molecules can also serve for the development of synthetic RNA devices with applications ranging from the control of transgene expression in gene therapy to the specific biosensing of small molecules. The engineering of such nanomachines is greatly facilitated by the proper understanding of their structure as well as the introduction of new technologies. Herein, a general overview of the current knowledge on natural riboswitches prior to explaining the main strategies used to develop new synthetic structure‐switching molecules (riboswitches or biosensors) controlled by small molecules is given.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call