Abstract

Nucleus 22C is one of the exotic neutron-rich nuclei placed near neutron drip line has a Borromean system (core + n + n). The weakly bound system causes nucleus 22C has large radial extended. The structure of two-neutron halo 22C was investigated in the three-body model (20C+ n +n). Jacobi coordinates was used in this model and used to describe configuration-T and Y. Hamiltonian of three-body system was used to study neutron halo features such as binding energy of neutron valence, root mean square matter radii, and core deformation. In this study, the core deformation was used to determine the binding energy of neutron valence and root mean square matter radii. All the calculations were run in the MATLAB. The results showed that the 22C binding energies of neutron valence were in between −1.737 ~ −1.792 MeV, while the root mean squares matter radii were in between 6.451 ~ 7.011 fm, and the core of 22C has deformation values. Based on the results, 22C is considered as a halo nucleus due to the root mean square matter radii is bigger than 20C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call