Abstract
A combined NMR and neutron diffraction study has been carried out on three Li(3-x-y)Cu(x)N materials with x=0.17, x=0.29 and x=0.36. Neutron diffraction indicates that the samples retain the P6/mmm space group of the parent Li(3)N with Cu located only on Li(1) sites. The lattice parameters vary smoothly with x in a similar fashion to Li(3-x-y)Ni(x)N, but the Li(2) vacancy concentration for the Cu-substituted materials is negligible. This structural model is confirmed by wideline (7)Li NMR spectra at 193 K which show three different local environments for the Li(1) site, resulting from the substitution of neighbouring Li atoms in the Li(1) layer by Cu. Since the Cu-substituted materials are only very weakly paramagnetic, variable temperature (7)Li wideline NMR spectra can be used to measure diffusion coefficients and activation energies. These indicate anisotropic Li(+) diffusion similar to the parent Li(3)N with transport confined to the [Li(2)N] plane at low temperature and exchange between Li(1) and Li(2) sites dominant at high temperature. For the intra-layer process the diffusion coefficients at room temperature are comparable to Li(3)N and Li(3-x-y) Ni(x)N, while E(a) decreases as x increases in contrast to the opposite trend in Ni-substituted materials. For the inter-layer process E(a) decreases only slightly as x increases, but the diffusion coefficients at room temperature increase rapidly with x.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.