Abstract

In this study, the impact of cobalt oxide (CoO) on the structure, stability, linear and nonlinear optical parameters of B2O3–Na2O–ZnO glasses was scrutinized. A series of glass system (ZnCoNaB-glasses) was successfully prepared through the melt quenching approach. Optical absorbance, reflectance, transmittance and FTIR spectroscopy were performed for all ZnCoNaB-glasses. The FTIR results showed that the BO4 units are enhanced while nonbridging oxygens are decreased with further CoO addition. Furthermore, ZnO exists as four-coordinated [ZnO4] units and these units decreased with further doping of CoO. These structural variations produce a decreasing impact in Urbach energy and nonlinear refractive index, meanwhile enhance the glass stability. Further, the metallization criterion (M) values indicate that our glass samples can be used for a new generation of nonlinear optical glasses. The preceding results can predict that the investigated ZnCoNaB-glasses will be utilized in versatile applications; especially optical switching and computing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.