Abstract

A density functional theory study is performed to predict the structures and stability of carbon monoxide (CO) bound EX3+ (E = C, Si, Ge, Sn, Pb; X = H, F, Cl, Br, I) complexes. The possibility of bonding through both C- and O-sides of CO is considered. Thermochemical analysis reveals that all the dissociation processes producing CO and EX3+ are endothermic in nature whereas most of the dissociation reactions are endergonic in nature at room temperature. The nature of bonding in EC/O bonds is analyzed via Wiberg bond index, natural population analysis, electron density, and energy decomposition analyses in conjunction with natural orbitals for chemical valence scheme. In comparison to CO stretching frequency ( ν∼CO) in free CO, while a red shift is noted in O-side binding, the C-side binding results in a blue shift in ν∼CO. The relative change in ν∼CO values in CO bound EX3+ complexes on changing either E or X is scrutinized and possible explanation is provided in terms of polarization in the σ- and π-orbitals and the relative strength of C→E or O→E σ-donation and E→C or E→O π-back-donation. © 2016 Wiley Periodicals, Inc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.