Abstract

The molecular dynamics was employed to study the structure stability and high-temperature distortion resistance of a trilayer complex formed by a monolayer graphene sandwiched in bilayer boron nitride nanosheets (BN-G-BN) and graphenes (G-G-G). The investigation shows that the optimal interlayer distances are about 0.347 nm for BN-G-BN and 0.341 nm for G-G-G. Analysis and comparison of the binding energy, van der Waals interactions between layers and radial distribution function (RDF) revealed that the BN-G-BN achieves a more stable combined structure than G-G-G. The interlayer graphene in the trilayer complex nanosheets, especially the graphene in BN-G-BN, is more integrated than monolayer graphenes in a crystal structure. The structures at high temperature of 1500 K show that the BN-G-BN exhibits less distortion than G-G-G; especially, fixing the atomic positions on up-down layers can obviously further reduce structural deformation of interlayer graphene. The result further indicates that the high-temperature distortion resistance of interlayer graphene in the trilayer complex is related to both material type and conditions of constraints at the up-down layers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.