Abstract

Quantum confinement of electrons in atomic chains provides the most powerful and versatile means to control electronic, optical, magnetic and thermoelectric properties of materials needed to make diodes, spin valves and optical labels. Furthermore, the alloying of metallic atoms in different compositions produces novel mechanical, electronic and chemical behaviours in bimetallic chains as well as in other structures. This motivated us to perform theoretical investigations on the structure, stability, magnetic and electronic properties of bimetallic atomic chains of Au–Ag and Au–Pt, by using Vienna ab-initio simulation package (VASP), which is based on the density functional theory (DFT) within generalised gradient approximation. We have used tension and cohesive energy criteria to assess the stability of the Au–Ag and Au–Pt atomic chains. A comparison between the computed cohesive energies of various possible structures are made to suggest the most probable chain structures that can occur in break junction experiments. Our computed results suggest that the ground state of the Au–Ag and Au–Pt atomic chains should have zig-zag geometry. Furthermore, the most favoured chain structures that can be formed at the last stage of nanowires stretching are: (i) an atomic chain with alternate arrangement of equal number of Au and Ag / Pt atoms and (ii) an atomic chain where two Ag / Pt atoms are separated by one Au atom. Our results on the electronic band structure and optical properties suggest that the Au–Ag atomic chain could be of semiconducting nature, while the most stable Au–Pt chain is metallic in nature. A spin-polarised calculation with the inclusion of spin–orbit coupling shows that the Au–Pt atomic chains are magnetic, if the number of Au atoms is not more than the number of Pt atoms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call