Abstract
The importance of non-Watson-Crick base pairs in the three-dimensional structure of RNA is now well established. The structure and stability of these noncanonical base pairs are, however, poorly understood. We have attempted to understand structural features of 33 frequently occurring base pairs using density functional theory. These are of three types, namely (i) those stabilized by two or more polar hydrogen bonds between the bases, (ii) those having one polar and another C-H...O/N type interactions, and (iii) those having one H-bond between the bases and another involving one of the sugars linked to the bases. We found that the base pairs having two polar H-bonds are very stable as compared to those having one C-H...O/N interaction. Our quantitatively analysis of structures of these optimized base pairs indicates that they possess a different amount of nonplanarity with large propeller or buckle values as also observed in the crystal structures. We further found that geometry optimization does not modify the hydrogen-bonding pattern, as values of shear and open angle of the base pairs remain conserved. The structures of initial crystal geometry and final optimized geometry of some base pairs having only one polar H-bond and a C-H...O/N interaction, however, are significantly different, indicating the weak nature of the nonpolar interaction. The base pair flexibility, as measured from normal-mode analysis, in terms of the intrinsic standard deviations of the base pair structural parameters are in conformity with those calculated from RNA crystal structures. We also noticed that deformation of a base pair along the stretch direction is impossible for all of the base pairs, and movements of the base pairs along shear and open are also quite restricted. The base pair opening mode through alteration of propeller or buckle is considerably less restricted for most of the base pairs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.