Abstract

Three different silica-supported nickel samples were prepared by successive adsorption, reduction, and passivation (SARP) of nickel. The materials obtained were characterized by various techniques (TEM, XRD, H2 chemisorption, FTIR spectroscopy of adsorbed CO, FMR). Metal nickel particles were uniformly distributed by size with all samples. With increasing the number SARP cycles (1, 3, and 5, respectively) the metal concentration (3.6, 7.6, and 12.6 wt%, respectively) and the mean particle size (4–5, ca. 6 and ca. 7 nm, respectively) also increased without substantial increase of the number of metal particles. The samples were tested as catalysts in methanol decomposition to CO and H2. It was found that this reaction was structure sensitive and the turn-over frequency decreased with the particle size increase. In contrast, the secondary interaction between the reaction products, i.e., CO methanation (occurring above 515 K) appears to be structure insensitive.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.