Abstract

The photochemical reduction of Ag+ and oxidation of Pb2+ from aqueous solution by SrTiO3 leave insoluble reaction products (silver and PbO2, respectively) on the surface. Microscopic analysis has been used to relate the rates of these two reactions to the structure and orientation of SrTiO3 surfaces. The nonpolar (100) surface is the most reactive for silver reduction and the composition of the termination layer does not influence this reaction. On the polar (111) surface, the reduction and oxidation reactions occur on terraces with different terminations and opposite charges; this leads to a nonuniform distribution of reaction products. The polar (110) surface is the least reactive, and the majority of the reaction products are observed at steps along <100> directions where the more reactive {100} surfaces are exposed. The distribution of oxidation products found on (110) terraces is also influenced by the composition and charge of the surface termination. The results show that the photochemical reactivity of SrTiO3 is anisotropic and that, on polar surfaces, dipolar fields arising from charged surface domains influence the transport of photogenerated charge carriers and promote spatially selective oxidation and reduction reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.