Abstract

Presence and stability of a protein network was evaluated by fluorescence spectroscopy, by protein solubility studies, and by assessing the accessibility of protein thiols in samples of commercial Italian semolina pasta made in industrial plants using different processes. The pasting properties of starch in each sample were evaluated by means of a viscoamylograph. Magnetic resonance imaging (MRI) was used to evaluate water distribution and water mobility in dry pasta, and at various cooking times. The molecular information derived from these studies was related to sensory indices, indicating that protein reticulation was dependent on the process conditions, which affected water penetration, distribution, and mobility during cooking. Products with a crosswise gradient of water mobility once cooked had the best sensory scores at optimal cooking time, whereas products with a less compact protein network performed better when slightly overcooked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.