Abstract

AbstractStructure–property relationships in poly(urethane urea)s synthesized with ultra‐low monol content poly(propylene glycol) soft segments were investigated as soft segment molecular weight (2000, 4000, and 8000 g/mol) and hard segment content (6.3 and 9.0 wt %) were varied. Morphological features such as interdomain spacing and interphase thickness were quantified and revealed with small‐angle X‐ray scattering (SAXS) and atomic force microscopy (AFM). The thermal and mechanical behavior was assessed with a dynamic mechanical analyzer (DMA) and by differential scanning calorimetry (DSC) and stress‐strain tests. Hard segment content, over the limited range studied, had little effect on the morphology and soft segment thermal and mechanical properties. The molecular weight of the soft segments had considerably more influence on the morphology and mechanical properties. Increasing soft segment molecular weight resulted in greater interdomain spacings, as shown by SAXS, and a noticeable change in the structure, as shown by AFM. Additionally, as soft segment molecular weight decreased the soft segment glass transition broadened and rose to higher temperatures. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 84: 229–243, 2002; DOI 10.1002/app.10168

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.