Abstract

Broadband dielectric relaxation spectroscopy (DRS), thermally stimulated depolarisation currents (TSDC), differential scanning calorimetry (DSC) and to a lesser extent water uptake measurements, were employed to investigate molecular mobility, morphology and crystallization/melting events of PEG in poly(imide-amide)–polyethylene glycol hybrid networks (PIA–PEG) with short ( M n=1000 g/mol) and long ( M n=3400 g/mol) PEG crosslinks. The results obtained suggest long range connectivity of the PEG component in the hybrids with short PEG crosslinks at PEG content higher than 40 wt% and in these with long PEG crosslinks at PEG content higher than 20 wt%. Crystallization of the PEG component is observed by DSC in the hybrids with the longer crosslinks at sufficiently high content of PEG, only. The glass transition temperature, T g, of PEG component in the hybrids with the shorter PEG crosslinks is shifted to higher temperatures compared to that of the hybrids with longer PEG crosslinks, while suppression of the glass transition of the PEG component is observed in the hybrids with the shorter PEG crosslinks at PEG content lower than 40 wt%. The results are discussed in terms of constraints to segmental motion of the PEG crosslinks, imposed by fixed PEG chain ends on the rigid PI chains.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.