Abstract

A new family of heteroleptic diimine-diphosphine copper(I) complexes is reported, with six new complexes compared to benchmark [Cu(bcp)(DPEPhos)]PF6 . These new complexes are based on 1,4,5,8-tetraazaphenanthrene (TAP) ligands with representative electronic properties as well as substitution patterns and DPEPhos and XantPhos as diphosphine ligands. Their photophysical and electrochemical properties were investigated and correlated with the number and position of substituents on the TAP ligands. Stern-Volmer studies using Hünig's base as reductive quencher demonstrated the influence of the complex photoreduction potential and of the excited state lifetime on the photoreactivity. This study refines the structure-property relationship profile for heteroleptic copper(I) complexes and confirms that such profiles are of high interest to design new copper complexes as optimized photoredox catalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.