Abstract
Structure–property relationships and spatial residual stress distribution in a friction stir spot welded magnesium alloy (AZ31) sheet was investigated to elucidate the incipient deformation mechanisms and welding process parameters. Experimental results revealed a decrease in the tensile and compressive yield strengths, as well as an increase in ductility and grain size, as the tool rotational speed and shoulder depth increased. Residual stresses were measured using neutron diffraction, and a strong dependency was found between the grain size, residual stress and the welding parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.