Abstract
Synthesis and properties of fluorene and carbazole derivatives having three electrophores per molecule with different architectures are reported. The synthesized compounds possess high thermal stabilities with 5% weight loss temperatures exceeding 350 °C. They form glasses with glass transition temperatures ranging from 60 to 68 °C. Cyclovoltammetric experiments revealed the high electrochemical stability of the fluorene trimer. In contrast, 2- and 2,7-fluorenyl substituted carbazole derivatives show irreversible oxidation in the CV experiments. The electron photoemission spectra of the films of the synthesized compounds revealed ionization potentials of 5.65-5.89 eV. Hole drift mobilities in the amorphous layers of the synthesized compounds reach 10(-2) cm(2) V(-1) s(-1) at high electric fields, as established by a xerographic time-of-flight technique. DFT calculations show that HOMO and LUMO orbitals of the compounds are very similar in energy and shape. The similar hole mobilities observed for the three compounds are discussed in the frame of the Marcus theory. An important influence of the alkyl groups on the ionization potentials and on the hole mobilities was also observed and its origin is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.