Abstract

High-purity insoluble dietary fibre (HPIDF) was obtained from low-purity dietary fibre (LPDF) of Okara using a combined-enzyme method. For exploring the value of HPIDF as a functional food material, the structure, physicochemical properties, adsorption properties, potential bioactivities of HPIDF and their changes in different stages of digestion were explored in vitro. The results show that HPIDF shows a high perfect oil-holding capacity, higher viscosity, better cation exchange capacity, α-amylase activity ratio due to smaller particle size and larger specific surface area. The heavy metals-adsorption (Cd2+, Pb2+, Zn2+) shows the same, especially in simulated gastric fluid, which is similar to the adsorbability of glucose, cholesterol and acrylamide. Beyond the structure, the dissociation degree of some functional groups result from different digestive environments is the possible cause. Okara is an ideal material for the recovery of HPIDF, which has the potential to be processed into functional food materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.