Abstract

Melt-spun ribbons of Fe99–x–yZrxByCu1 alloys with x + y = 11 and x + y = 13 were prepared under similar experimental conditions and characterized for structure and soft magnetic properties. Substitution of Zr by B changes the structure of as-spun ribbons from completely amorphous to cellular bcc solid solution coexisting with the amorphous phase at intercellular regions and then to completely dendritic solid solution. The glass forming ability (GFA) of the Fe-Zr-B-Cu system, evaluated from thermodynamic properties such as enthalpy of mixing and mismatch entropy, is found to be in good agreement with the experimental observations. Annealing of all ribbons leads to the precipitation of nanocrystalline bcc α-Fe phase from both amorphous phase and already existing bcc solid solution. A window of alloy compositions that exhibit the best combination of soft magnetic properties (high saturation magnetization and low coercivity) was identified.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.