Abstract
State-of-the-art neural style transfer methods have demonstrated amazing results by training feed-forward convolutional neural networks or using an iterative optimization strategy. The image representation used in these methods, which contains two components: style representation and content representation, is typically based on high-level features extracted from pretrained classification networks. Because the classification networks are originally designed for object recognition, the extracted features often focus on the central object and neglect other details. As a result, the style textures tend to scatter over the stylized outputs and disrupt the content structures. To address this issue, we present a novel image stylization method that involves an additional structure representation. Our structure representation, which considers two factors: i) the global structure represented by the depth map and ii) the local structure details represented by the image edges, effectively reflects the spatial distribution of all the components in an image as well as the structure of dominant objects respectively. Experimental results demonstrate that our method achieves an impressive visual effectiveness, which is particularly significant when processing images sensitive to structure distortion, e.g. images containing multiple objects potentially at different depths, or dominant objects with clear structures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.