Abstract

Quadratic pencils λ2M + λC + K, where M, C, and K are n × n real matrices, arise in a broad range of important applications. Its spectral properties affect the vibration behavior of the underlying system which often consists of many elements coupled together through an intricate network of inter-connectivities. It is known that an n-degree-of-freedom system with semi-simple eigenvalues can be reduced to, without tampering with the innate vibration properties, n mutually independent single-degree-of-freedom subsystems, referred to as total decoupling. This paper revisits the problem with the additional constraint that the masses should stay invariant throughout the reduction process. Rescaling the masses if necessary, M is assumed to be the identity matrix. Isospectral flows are derived to either totally or partially decouple C and K to independent units of modules. Indeed, the same framework can be tailored to handle any kinds of desired structure. Two new results are obtained. First, the global convergence is guaranteed by using the Łojasiewicz gradient inequality. Second, bounds on errors due to numerical integration and floating-point arithmetic calculation are derived, which can be used for assessing the quality of the transformation. Numerical experiments on four distinct scenarios are given to demonstrate the capabilities of the framework of handling the decoupling problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.