Abstract
Based on a splitting method and a composition method, we construct some structure-preserving algorithms with first-order, second-order and fourth-order accuracy for a Lorenz system. By using the Liouville's formula, it is proven that the structure-preserving algorithms exactly preserve the volume of infinitesimal cube for the Lorenz system. Numerical experimental results illustrate that for the conservative Lorenz system, the qualitative behaviour of the trajectories described by the classical explicit fourth-order Runge–Kutta (RK4) method and the fifth-order Runge–Kutta–Fehlberg (RKF45) method is wrong, while the qualitative behaviour derived from the structure-preserving algorithms with different orders of accuracy is correct. Moreover, for the small dissipative Lorenz system, the norm errors of the structure-preserving algorithms in phase space are less than those of the Runge–Kutta methods.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.