Abstract

With the increasing penetration of renewable energy systems such as plug-in hybrid electric vehicles, wind and solar power into the power grid, the stochastic disturbances resulting from changes in operational scenarios, uncertainties in schedules, new demands and other mitigating factors become crucial in power system stability studies. This paper presents a new method for analyzing stochastic transient stability using the structure-preserving transient energy function. A method to integrate the transient energy function and recloser probability distribution functions is presented to provide a quantitative measure of probability of stability. The impact of geographical distribution and signal-to-noise ratio on stability is also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.