Abstract
The preservation of some structure properties of the flow of differential systems by numerical exponentially fitted Runge–Kutta (EFRK) methods is considered. A complete characterisation of EFRK methods that preserve linear or quadratic invariants is given and, following the approach of Bochev and Scovel [On quadratic invariants and symplectic structure, BIT 34 (1994) 337–345], the sufficient conditions on symplecticity of EFRK methods derived by Van de Vyver [A fourth-order symplectic exponentially fitted integrator, Comput. Phys. Comm. 174 (2006) 255–262] are obtained. Further, a family of symplectic EFRK two-stage methods with order four has been derived. It includes the symplectic EFRK method proposed by Van de Vyver as well as a collocation method at variable nodes that can be considered as the natural collocation extension of the classical RK Gauss method. Finally, the results of some numerical experiments are presented to compare the relative merits of several fitted and nonfitted fourth-order methods in the integration of oscillatory systems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.