Abstract

A broad class of partitioned differential equations with possible algebraic constraints is considered, including Hamiltonian and mechanical systems with holonomic constraints. For mechanical systems a formulation eliminating the Coriolis forces and closely related to the Euler--Lagrange equations is presented. A new class of integrators is defined: the super partitioned additive Runge--Kutta (SPARK) methods. This class is based on the partitioning of the system into different variables and on the splitting of the differential equations into different terms. A linear stability and convergence analysis of these methods is given. SPARK methods allowing the direct preservation of certain properties are characterized. Different structures and invariants are considered: the manifold of constraints, symplecticness, reversibility, contractivity, dilatation, energy, momentum, and quadratic invariants. With respect to linear stability and structure-preservation, the class of s-stage Lobatto IIIA-B-C-C* SPARK methods is of special interest. Controllable numerical damping can be introduced by the use of additional parameters. Some issues related to the implementation of a reversible variable stepsize strategy are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.