Abstract

Intermediate filaments (IFs), in addition to microtubules (MTs) and microfilaments (MFs), are one of the three major components of the cytoskeleton in eukaryotic cells. As the basic building block of IFs, the properties of the IF dimmer re crucial to fully understand the molecular basis for the properties of the IF network in cells. However, the structure of IF dimers remains unknown, which has thus far prevented the elucidation of its nanomechanical properties, in particular molecular-level mechanisms of deformation. Here we present the development of a full atomistic molecular model of the vimentin dimmer, a coiled-coil structure consisting of four alpha-helixes (AHs). The structure is found to be stable in molecular dynamics simulation after an extensive equilibration process. After careful structure prediction, the behavior of the IF dimer under mechanical stress is investigated; including studies of changing the pulling velocity and a detailed analysis of the associated deformation and rupture mechanisms. Most notably, we observe a transition of AHs to beta-sheets (BSs) under mechanical deformation, as has been observed indirectly in earlier experimental studies. Our result helps to better understand the structure and fracture mechanism of this important protein filament.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.