Abstract

Analyzing protein structure has become an integral aspect of understanding systems of biochemical import. The laboratory experiment endeavors to introduce protein folding to ascertain structures of proteins for which the structure is unavailable, as well as to critically evaluate the quality of the prediction obtained. The model system used is the highly mutable influenza virus protein neuraminidase, which is the key target in the development of therapeutics. In light of recent pandemics, understanding how mutations confer drug resistance, which translates at the molecular level to understanding how different sequence variants differ, constitutes an area of great interest because of the ramifications in public health. This lab targets upper level undergraduate biochemistry students, and aims to introduce tools to be used to explore protein folding and protein visualization in the context of the neuraminidase case study. Students proceed to critically evaluate the folded models by comparison with crystallographic structures. When validity is established, they fold a neuraminidase sequence for which a structure is not available. Through structural alignment and visual inspection of the 150 loop, students gain molecular insight into two possible conformations of the protein, which are actively being studied. Folding the third chosen sequence mimics a true research environment in allowing students to generate a structure from a sequence for which a structure was not previously available, and to assess whether their particular variant has an open or closed loop. From this vantage, they are then challenged to speculate about the connection between loop conformation and drug susceptibility. © 2016 by The International Union of Biochemistry and Molecular Biology, 44(4):361-376, 2016.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call