Abstract

Ethyl cellulose (EC) was filled with bentonite (Bent) particles by mechanical dispersion to produce composite film materials that were studied using various methods. According to X-ray diffraction (XRD) analysis, the inter-chain separation length was larger in EC/Bent composite then those in pure polymer. Infrared spectrometry indicated a formation of hydrogen bonds between the hydroxyl groups of EC and the silanol groups of clay. Tests showed an increase in tensile strength of the polymer material (by 35–40%) when doped with bentonite. It was found that modification of polymer with bentonite resulted in increasing of the adsorption efficiency of methylene blue (MB): the equilibrium concentration of MB ions in adsorbent phase increased 2.5 times. The MB adsorption kinetics obeyed the pseudo-first-order mechanism. Isotherms were in good agreement with Langmuir model. For the composite, the maximum monolayer adsorption capacity was 4 times higher than that for pure polymer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call