Abstract

Photobases are compounds that become strong bases after electronic excitation. Recent experimental studies have highlighted the photobasicity of the 5-R quinoline compounds, demonstrating a strong substituent dependence to the pKa*. In this paper, we describe our systematic study of how the thermodynamic driving force for photobasicity is tuned through substituents in four families of nitrogen-containing heterocyclic aromatics. We show that substituent position and identity both significantly impact the pKa*. We demonstrate that the substituent effects are additive and identify many disubstituted compounds with substantially greater photobasicity than the most photobasic 5-R quinoline compound identified previously. We show that the addition of a second fused benzene ring to quinoline, along with two electron-donating substituents, lowers the S0 → SPBS vertical excitation energy into the visible region while still maintaining a pKa* > 14. Overall, the structure-function relationships developed in this study provide new insights to guide the development of new photocatalysts that employ photobasicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.