Abstract

Levelers, as an essential part of organic additives in copper electroplating, play a crucial role in the fabrication of sophisticated interconnects in integrated circuits, packaging substrates, and printed circuit boards. In this work, four N-heterocyclic oligomers were synthesized and characterized, along with investigations of their electrochemical behaviors and their synergism with other bath components. The corresponding effects of the oligomers on the deposited copper films were analyzed by morphological and compositional characterizations. The leveling mechanism of the oligomers was further discussed with the aid of quantum chemical calculations. The results exhibit that each of these N-heterocyclic oligomers holds a particular degree of leveling ability. The oligomer of 1,3-bis(1-imidazolyl)propane and 1,3-dichloro-2-propanol (IPIEP) is the best leveler for THs plating compared with the other three oligomers. It was found that the hydroxyl group in IPIEP enhances the hydrophilicity of the modified molecule and triggers a more stable complexation between IPIEP and H2O-Cu(I)-MPS. Moreover, imidazole demonstrates a better practicality than piperazine. This work recommends the combination of N-heterocycles in planar conformation with modification by the hydroxyl group to synthesize high-performance straight-chain levelers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call