Abstract

The growing use of automated methods in seismic interpretation highlights the importance of data treatment. We analyze the effect of structure-oriented filtering seismic data on machine learning techniques and apply the filter to the data before calculating seismic attributes. We apply this methodology to a migrated section of Buzios Field from the Brazilian presalt in Santos Basin. The analysis is restricted to the case of unsupervised methods, namely self-organized maps and generative topographic mapping. We use four different seismic attributes that are known to be good salt indicators. Two are based on texture, and two are based on coherence. The use of filtering can improve salt identification in clustering when more attributes are considered.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.