Abstract

Equal margin design method based on the classic analytic formula is widely used in development of extra-high voltage bushing products, and its effectiveness and practicality have been fully validated. However, model and temperature factors have significant impact on internal E-field distribution of UHVAC and UHVDC bushing condenser, which traditional analytic formula is difficult to evaluate quantitatively, so it’s necessary to improve traditional equal margin design method. Firstly, basic principles of equal margin design method and its software package were briefly described, and the laws of model and temperature factors influencing on condenser E-field were investigated on FEM (finite element method) computing platform. Based on these, mathematical model of improved equal margin design method for bushing condenser was established, and flow chart of optimization process combining FEM electro-thermal coupling calculation with genetic algorithm was presented. The improved method was applied to design of UHV RIP oil-gas prototype to realize uniform axial E-field distribution along bushing condenser and equal partial discharge margin between adjacent foils. Bushing condenser was fabricated according to above optimized design structure, and has passed all type tests. In the paper, the FEM electro-thermal coupling calculation method was applied to the inner insulation optimization design to make bushing condenser’s design more suitable. The paper can provide some theoretical guidelines for research and development of other bushings in UHV level.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.