Abstract

To improve the removal efficiency for dissolved wastes within CycloBio (CB) fluidized sand biofilters (FSBs) in recirculating aquaculture systems, we investigated their structural design and optimization using computational fluid dynamics (CFD) modeling tools, an orthogonal test method, and experimental verification. Results showed that the effects of structural parameters on bed expansion from large to small were: cone height, cone diameter and slot width. The best combination was: cone height 60mm, cone diameter 165mm, and slot width 1.0mm. The solid phase was well distributed not only in the radial direction, but also in the axial direction in the optimized CB FSB. The bed expansion (40%–120%) was increased about 13%. Energy savings were 21%–28% at the same bed expansion. When the optimized CB FSB was used to treat synthetic aquaculture wastewater, with three bed expansions and four levels of C/N, total ammonia nitrogen removal rate expressed per unit of expanded bed volume was high, from 629 to 881gm−3day−1. All results indicated that the structure of the optimized CB FSB was more reasonable and that the combination of CFD simulation and the orthogonal test method could be successfully applied to structural optimization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.