Abstract

Although the combination of magnetic and noble metals in core-shell nanoparticles is very useful in many applications, the preparation of magnetic-noble bimetallic core-shell nanoparticles with uniform shells remains a great challenge due to large mismatch of crystal lattices between magnetic and noble metals. Herein we present non-aqueous methods for combing Au and Ni in nanoscale to form a core-shell structure. Ni@Au nanoparticles were prepared via an injection-quenching process in which Au precursors decomposed and formed closed shells on pre-formed Ni seeds synthesized in oleylamine, whereas Au@Ni nanoparticles were obtained in a one-step reaction involving a seed-catalyzed mechanism. The formed core-shell structure was confirmed by high-angle annular dark-field imaging along with the analyses of energy-dispersive X-ray spectroscopy and high-resolution transmission electron microscopy. UV-Visible absorption spectroscopy and superconducting quantum interference device magnetometer were used to characterize the optical and magnetic properties of the as-prepared bimetallic core-shell nanoparticles. Through the adjustment of growth conditions, Ni@Au and Au@Ni nanoparticles with different core or shell dimensions and morphologies were obtained, which offers an important means to tailor their optical and magnetic properties for multiple practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call