Abstract
The epitaxial deposition of oxides on silicon opens the possibility of incorporating their diverse properties into silicon-device technology. Deposition of SrTiO(3) on silicon was first reported over a decade ago, but growing the coherent, lattice-matched films that are critical for many applications has been difficult for thicknesses beyond 5 unit cells. Using a combination of density functional calculations and x-ray diffraction measurements, we determine the atomic structure of coherent SrTiO(3) films on silicon, finding that the Sr concentration at the interface varies with the film thickness. The structures with the lowest computed energies best match the x-ray diffraction. During growth, Sr diffuses from the interface to the surface of the film; the increasing difficulty of Sr diffusion with film thickness may cause the disorder seen in thicker films. The identification of this unique thickness-dependent interfacial structure opens the possibility of modifying the interface to improve the thickness and quality of metal oxide films on silicon.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.