Abstract

Inter-station Green's functions estimated from ambient noise studies have been widely used to investigate crustal structure. However, most studies are restricted to continental areas and use fundamental-mode surface waves only. In this study, we recover inter-station surface (Scholte-Rayleigh) wave empirical Green's function (EGFs) of both the fundamental- and the first-higher mode using one year of continuous seismic noise records on the vertical component from 28 ocean bottom seismographs deployed in the Quebrada/Discovery/Gofar transform faults region on the East Pacific Rise. The average phase-velocity dispersion of the fundamental mode (period band 2–30 s) and the first-higher mode (period band 3–7 s) from all EGFs are used to invert for the 1-D average, shear-velocity structure in the crust and uppermost mantle using a model-space search algorithm. The preferred shear-velocity models reveal low velocities (4.29 km/s) between Moho and 25 km depth below sea-surface, suggesting the absence of a fast uppermost mantle lid in this young (0–2 Myr) oceanic region. An even more pronounced low-velocity zone, with shear velocities ∼3.85 km/s, appears at a depth between 25–40 km below sea-surface. Along with previous results, our study indicates that the shear velocity in the uppermost oceanic mantle increases with increasing seafloor age, consistent with age-related lithospheric cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call