Abstract

The structure and hydrogen bonding of water in the vicinity of phospholipid analogue random copolymers [poly(2-methacryloyloxyethyl phosphorylcholine-r-n-butyl methacrylate), Poly(MPC-r-BMA)] with various molecular weights were analyzed in their aqueous solutions and thin films with contours of O−H stretching of Raman and attenuated total reflection infrared (ATR-IR) spectra, respectively. The relative intensity of the collective band (C value) corresponding to a long-range coupling of O−H stretchings of the Raman spectra for the aqueous solution of Poly(MPC-r-BMA) was very close to that for pure water, which is in contrast with the smaller C value in the aqueous solution of ordinary polyelectrolytes. The number of hydrogen bonds collapsed by the presence of one monomer residue (Ncorr value) of Poly(MPC-r-BMA) (Mw 1.3 × 104, 3.0 × 104, and 9.3 × 104) was much smaller than those for ordinary polyelectrolytes and close to those for neutral polymers such as poly(ethylene glycol) and poly(N-vinylpyrrolidone)....

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.