Abstract

A detailed analysis of the structure of turbulence in a temporal planar turbulent jet is reported. Instantaneous snapshots of the flow and three-dimensional spatial correlation functions are considered. It is found that the flow is characterized by large-scale spanwise vortices whose motion is felt in the entire flow field. Superimposed to this large-scale motion, a hierarchy of turbulent structures is present. The most coherent ones take the form of quasi-streamwise vortices and high and low streamwise velocity streaks. The topology of these interacting structures is analyzed by quantitatively addressing their shape and size in the different flow regions. Such information is recognized to be relevant for a structural description of the otherwise disorganized motion in turbulent free-shear flows and can be used for the assessment of models based on coherent structure assumptions. Finally, the resulting scenario provides a phenomenological description of the elementary processes at the basis of turbulence in free-shear flows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.